
Quick System Design of Vesicle-Based Active Transport

Molecular Communication by Using a Simple Transport

Model✩

Nariman Farsad, Andrew W. Eckforda, Satoshi Hiyama and Yuki Moritanib

aNariman Farsad and Andrew W. Eckford are with the Department of Computer Science
and Engineering, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J

1P3. Emails: nariman@cse.yorku.ca, aeckford@yorku.ca
bSatoshi Hiyama and Yuki Moritani are with Research Laboratories, NTT DOCOMO

Inc., Yokosuka, Kanagawa, Japan. Emails: hiyama@nttdocomo.co.jp,
moritani@nttdocomo.co.jp

Abstract

This paper will provide a guidepost to design an optimal molecular communi-

cation setup and protocol. A barrier to the design of vesicle-based molecular

communication nanonetworks is the computational complexity of simulating

them. In this paper, a computationally efficient transport model is presented,

which could be employed to design active transport molecular communica-

tion systems, particularly to optimize the shape of the transmission zone.

Furthermore, a vesicular encapsulation model is presented as an addition to

the transport model, and it is shown that there exists an optimal vesicle size

for each molecular communication channel. As an application, our transport

model is used to estimate the channel capacity of a molecular communication
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nanonetwork in a computationally efficient manner compared to traditional

Monte Carlo techniques. Moreover, it is shown that the derived optimal

vesicle size maximizes channel capacity.

Keywords: Molecular communication, information theory, system design

1. Introduction

Inspired by living organisms, molecular communication [1] is one approach

to communication at small scales. In molecular communication, as in inter-

cellular and intracellular communication, molecules are used to transfer in-

formation over very small distances, typically on the order of micro- or nano-

meters. The information can be encoded into the type of the molecule [2], the

number or concentration of molecules [3, 4, 5], or the time of release[6, 3].

Information carrying molecules can also be encapsulated inside lipid vesi-

cles or liposomes. Vesicular encapsulation compartmentalizes information

molecules from the propagation environment and provides a generic archi-

tecture to transport diverse types of information molecules, independent of

their biochemical and physical characteristics [1]. It also protects informa-

tion molecules from denaturation (e.g., molecular deformation and cleavage

caused by enzymatic attacks or changes in pH of the outer aqueous phase)

in the propagation environment [1]. In [7] a chemical assembly line for gen-

eration of lipid vesicles and encapsulation process is presented.

The released molecules or lipid vesicles encapsulating the molecules can

propagate from the transmitter or the source to a receiver or the destination

using one of the two major propagation schemes: passive transport and active

transport [8, 5]. In passive transport, the information carrying particles

2



diffuse in the confined microfluidic channel and follow a Brownian motion

from the transmission zone to the receiver zone. In active transport, the

information particles are transported actively using molecular motors such

as kinesin. For example in [9], microtubule filaments moving over a glass

substrate covered with stationary kinesin motors is proposed as an active

transport scheme for molecular communication systems. In this work we

consider only the active transport propagation scheme proposed in [9, 10].

Because of the complexity of molecular communication systems as well

as the gaps in the underlying theoretical and mathematical frameworks, re-

searchers sometimes rely on computer simulations to study systems. For

example, Monte Carlo simulations are employed in [8, 5] to study achievable

information rates. However, running simulations can be time consuming and

computationally intensive. Therefore, it is desirable to find a computation-

ally efficient mathematical framework for studying these systems. Deriving

a mathematical model, specially for molecular communication in confined

space, is extremely difficult because of the complexity and dependencies

present in these systems.

Notable works employing simulation or mathematical models to study

molecular communication systems include a general formulation of molecular

communication as a timing channel under Brownian motion [6, 11], an analy-

sis of information transfer rates using molecular motors [12, 3], mathematical

channel models for continuous diffusion [13], binary concentration-encoded

molecular communication [4], and a simple model comparing the achievable

information rates of passive transport using Brownian motion to that of ac-

tive transport using microtubule filaments moving over a molecular motor
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track [8, 5].

In this work, with the help of some independence assumptions, we first

present a simple mathematical representation of active transport molecu-

lar communication system in confined space, that can be used to optimize

and study these systems. We focus on active transport since in [5] it was

shown that over long distances it achieves higher information rate compared

to Brownian motion. We then use this model to optimize the shape of the

transmission area and study the effects of vesicular encapsulation on achiev-

able information rates. Our contributions in this work are as follows.

• We derive an approximate, but low-complexity, transport model which

can be used to study and optimize active transport molecular commu-

nication.

• As an application, we use this model to find and verify an optimal

design of the loading area; this optimization leads to large improve-

ments in performance, and would be computationally intensive to find

without our model.

• We also use our model to study the effects of vesicular encapsulation

of information molecules. Based on our transport model, we show that

there is an optimal vesicle size for a given communication channel.

• Finally, as another application, we show that our proposed transport

model could be used to estimate channel capacity of active transport

molecular communication channel in a computationally efficiently man-

ner.
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Figure 1: Depiction of the communication environment.

The rest of this paper is organized as follows. In Section 2 we first present

a brief overview of the molecular communication environment. We then

present our transport model in Section 3. In Section 3.1 we optimize the

transmission area using the proposed transport model, while in Sections 3.2

and 3.3 we consider vesicular encapsulation modelling and optimization. As

an application, we use our transport model to estimate the channel capacity

of an active transport molecular communication system in Section 4, and

we show that this method is more computationally efficient than traditional

Monte Carlo techniques. We present our concluding remarks in Section 5.

2. Molecular Communication Environment

Our molecular communication environment is similar to the ones in [5,

8, 9]. We use a rectangular propagation environment (with slightly rounded

corners to assist the simulation), consisting of a transmission or loading zone

and a receiver or unloading zone. Message-bearing particles originate at

the transmission zone, and propagate until they arrive at the receiver zone.

Note that message-bearing particles could also be encapsulated inside lipid

vesicles by the transmitter before they are released for propagation. In this
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case, the vesicles propagate from the transmitter to the receiver. Information

particles or vesicles are initially assumed to be anchored to the transmission

zone until microtubule filaments, moving over molecular motor tracks that

cover the whole environment, pick up and transport the information carrying

particles or vesicles from the transmission zone to the receiver zone.

As in [9], we assume that the microchannel environment is lined with

static kinesin molecular motors, and that these motors cause microtubule

filaments to propagate along their surface. The motion of the microtubule is

largely regular (compared to pure Brownian motion), although the effects of

Brownian motion cause random fluctuations in the direction of the motion.

The loading and unloading mechanics are assumed to be the same as those

proposed in [9]. The particles are anchored to the transmission zone through

a single stranded DNA (ssDNA) hybridization bonds, and do not move until

they are picked up by a microtubule filament. The pick-up and drop-off

mechanisms are also assumed to be carried out through ssDNA hybridization

bonds. This process is summarized in Figure 1, and the reader is referred to

[9] for detailed explanation.

2.1. Simulating Active Transport

Although it has been demonstrated that it is possible to generate and

study this molecular communication system in wet labs [9, 10], it is very

difficult to study these systems from a communication perspective using lab-

oratory experiments. Therefore, previous works have relied on computer

simulations to study these systems. In [14, 15] the motion of microtubule fil-

aments over stationary kinesin molecular motors was simulated and in [8, 5]

a complete simulation of the communication system was presented. In this
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work, for our simulation based results, we use the same simulation techniques

proposed in [5].

Since the microtubules move only in the x–y directions, and do not move

in the z direction (along the height of the channel), we consider a two-

dimensional simulation of microtubules for ∆t time intervals. Given some

initial position (x0, y0) at time t = 0, for any integer k > 0, the motion of the

microtubule is given by the sequence of coordinates (xi, yi) for i = 1, 2, . . . , k.

Each coordinate (xi, yi) represents the position of the microtubule’s head at

the end of the time t = i∆t, where

xi = xi−1 + ∆r cos θi, (1)

yi = yi−1 + ∆r sin θi. (2)

In this case, the step size ∆r at each step is an independent and identically

distributed (iid) Gaussian random variable with mean and variance

E[∆r] = vavg∆t, (3)

Var[∆r] = 2D∆t, (4)

where vavg is the average velocity of the microtubule, and D is the micro-

tubule’s diffusion coefficient. The angle θi is no longer independent from step

to step: instead, for some step-to-step angular change ∆θ, we have that

θi = ∆θ + θi−1. (5)

Now, for each step, ∆θ is an iid Gaussian-distributed random variable with

mean and variance

E[∆θ] = 0, (6)

Var[∆θ] =
vavg∆t

Lp

, (7)
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where Lp is the persistence length of the microtubule’s trajectory. In [14],

these values were given as vavg = 0.85 µm/s, D = 2.0 · 10−3 µm2/s, and

Lp = 111 µm. Following [14], in case of a collision with a boundary, we

assume that the microtubule does not reflect off the boundary, as in an elastic

collision, but instead sets θi so as to follow the boundary.

The starting location of the microtubule is assumed to be random and

uniformly distributed across the entire propagation area. Moreover, the ini-

tial directional angle θ0 is selected uniformly at random from the range [0, 2π],

and microtubules are assumed to be initially unloaded (without any cargoes).

We also assume, as proposed in [9], ssDNA hybridization bond is used to an-

chor the information particles to the transmission area. Similarly, ssDNAs

on the surface of the microtubules hybridize with the ssDNAs on the surface

of the information particles when a microtubule passes in close proximity,

thereby loading the particles onto the microtubule. From experimental ob-

servations it is evident that microtubules can load multiple information par-

ticles [9]. Therefore, the loading of a particle happens only if a microtubule

with available cargo spots passes in close proximity of a particle.

Furthermore, to capture the loading process, in the simulations and the

transport model, we use the grid loading structure proposed in [5]. For

loading an information particle, the microtubule filament must drive close

to the anchored particle. Therefore, we divide the transmission zone into

a square grid, where the length of each square in the grid is the same as

the diameter of the particles. We then distribute particles randomly and

uniformly between the squares in the grid. If a microtubule enters a square

which is occupied by a particle, we assume the microtubule loads that particle
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Figure 2: A sample trajectory of active transport. The path of the microtubule is the

line in the middle of the rectangular channel. The thinner gray portion corresponds to

the path of the unloaded microtubule, while the thicker black portion corresponds to the

path of the loaded microtubule. The grid loading structure is on the left hand side and

the receiver strip is on the right hand side. The filled squares in the transmission zone

represent areas that contain an anchored particle, and empty squares represent areas with

no particles. There are a total of 100 squares (i.e. maximum number of particles that

could be anchored is 100), 20 of which have anchored particles.

given it has an empty loading slot available. In general, based on laboratory

experiments we assume that the microtubules can load multiple particles and

the maximum number of particles a microtubule can load is given by half

of its length divided by the diameter of the particles. For unloading, we

assume all the loaded particles are unloaded as soon as a microtubule enters

the receiver zone. Figure 2 shows a sample trajectory with the loading and

unloading mechanism. Notice that the transmission and the receiver zone in

this figure are rectangular strips across the width of the channel. We refer to

this particular shape of the transmission and the receiver zone as the strip

transmission zone and the strip receiver zone, respectively.
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3. Computationally Efficient Transport Model

In this section we present a computationally efficient transport model

for active transport molecular communication. Using our model we find the

probability that Y information particles arrive at the destination after T

seconds, given X information particles were released by the source.

Assume that our grid transmission zone contains n squares (i.e. the max-

imum number of particles that can be anchored to the transmission zone

is n). Let X ≤ n be the number of particles at the transmission zone in

the beginning, and let Y ≤ X be the number of particles delivered to the

receiver zone after time duration T . Let Xi be a Bernoulli random vari-

able representing the event where a particle is placed in the ith square for

i = 1, 2, · · · , n. Therefore, if we assume that Xi are independent of each

other, the probability that an information particle is placed in the ith square

is given by

p(Xi = 1) =
X

n
, (8)

where particles are distributed uniformly among squares. Note that the

independence assumption here is an approximation because it does not satisfy

the constraint

X =

n
∑

i=1

Xi. (9)

To satisfy this constraint, the dependence of the Xi and Xi+1 must be con-

sidered which would make the model complicated.

Let Vi be a Bernoulli random variable representing the event that the ith

square is visited by the microtubule in a single trip from the receiver zone,

to the transmission zone, and back. Therefore, p(Vi = 1) represents the
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Algorithm 1 Simulation algorithm to calculate p(Vi = 1)

1: mi ← 0 for all i

2: for k = 1, . . . , LargeNumber do

3: simulate the motion of a microtubule from receiver to transmitter and

back

4: if ith square in the grid is visited then

5: mi ← mi + 1

6: end if

7: end for

8: for i = 1, . . . , n do

9: p(Vi = 1)← mi/LargeNumber

10: end for

probability that the ith square is visited and p(Vi = 0) the probability that

it is not visited. This probability distribution can quickly be calculated using

simple Monte Carlo simulations for any molecular communication channel as

shown in Algorithm 1. For example, the top part of the Figure 3 shows

this probability distribution for squares of size 1µm covering the left side of

the microchannel. From the probability distribution, it can be seen that the

squares close to the walls are visited the most, which is a property of the

motion of the microtubules. As shown in [14, 15], when the microtubules

collide with the walls of the microchannel they follow the boundary with the

probability 0.5.

Let K be another random variable representing the number of micro-

tubule trips between the transmission and the receiver zone in time duration

T . The probability distribution for K is given in [8], and can be quickly cal-
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culated for any molecular communication channel using simple simulations.

Let V
(k)
i be a Bernoulli random variable representing the event that the ith

square is visited at least once by the microtubule during k trips. Therefore,

p(V
(k)
i = 1) = 1− (1− p(Vi = 1))k, (10)

represents the corresponding probability distribution. Here, we have assumed

that the probability of visiting a square in any trip is independent and iden-

tically distributed random variable Vi.

PDF visited squares 

for one trip

Molecular communication 

channel with strip loading 

zone (non-optimal)

Optimal loading area

(white squares)

Figure 3: (Top): Probability distribution of p(Vi = 1) for squares of size 1µm to the

left side of the loading area. (Middle): Strip loading area for n = 100 squares. (Bottom):

Projection of the probability distribution p(Vi = 1) on top. The top 100 values of p(Vi = 1)

are shown in as white squares and they represent the optimal loading area.

Let D
(k)
i be a Bernoulli random variable representing the event that a

particle from the ith square is delivered to the destination after k trips.

Then, the probability distribution of D
(k)
i is given by

p(D
(k)
i = 1) = p(V

(k)
i = 1)p(Xi = 1), (11)
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assuming p(V
(k)
i = 1) and p(Xi = 1) are independent. This independence

assumption is not accurate since p(Xi = 1) changes depending on the number

of particles already delivered in previous trips. In general this assumption

becomes less accurate as the number of trips k increases or in other words the

channel time duration T increases. Let Y (k) be the total number of particles

delivered to the receiver zone during k tips. Then, Y (k) is given by

Y (k) = min(
n

∑

i=1

D
(k)
i , X), (12)

for any given X. Since
∑n

i=1 D
(k)
i represents a Poisson-Binomial distribu-

tion, its corresponding probability distribution can be calculated using [16].

Finally, we can calculate PMF fY |X(Y |X) as

fY |X(Y |X) =
∑

k∈K

p(Y (k) | X)p(k), (13)

where p(Y (k) | X) is the probability mass function of Y (k) given in Equation

(12), and p(k) is the probability mass function of K, the number of trips

between the transmitter and receiver during the time duration T .

In the next subsections, we use this transport model to optimize the

molecular communication system.

3.1. Optimizing the Transmission Zone

We use our transport model presented in previous section, and the fact

that the microtubules mostly move along the walls of the molecular com-

munication channel, to optimize the loading area. Recall from top part of

the Figure 3 that microtubules mostly move along the walls, and therefore

p(Vi = 1) (probability that a square is visited in one microtubule trip) is
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higher for squares close to the walls of the molecular communication chan-

nel. An information particle is picked up from the transmission zone, and

delivered to the receiver zone, if the corresponding square is visited. There-

fore, we want to find squares with maximum p(Vi = 1), which are squares

that have the highest probability of being visited during one trip. In Figure

3, we plot the probability distribution of all the squares of length 1µm to the

left of transmission area (the bar plot on the top). The middle plot in Figure

3 shows our original strip loading area with 100 squares presented in Figure 2.

Notice that the squares in the middle of the strip transmission zone have low

probability of being visited in a single microtubule trip. The bottom plot

shows the projection of the probability distribution function of p(Vi = 1).

The first 100 squares with highest probabilities are shown as white squares,

and the rest of the squares are shown in black. Note that in this projection,

the minimum distance between the transmission area and the receiver area

is still 40µm and we have not moved the transmission and receiver physically

closer. Finally, according to our transport model, this white area is the opti-

mal transmission zone that will give us the highest information rate because

probability of visiting and picking up particles is highest.

3.2. Vesicular Encapsulation

As mentioned in the introduction, information-carrying particles could

be encapsulated inside lipid vesicles to keep them isolated from the propa-

gation environment, thereby preventing destructive chemical reactions that

could result in unsuccessful detection at the receiver. However, the effect of

vesicular encapsulation on information rate is not clear. For example, is it

better to encapsulate all the information molecules inside one giant vesicle
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or inside several smaller ones? Is there an optimal vesicle size for a given

molecular communication channel? In this section we present a model for

vesicular encapsulation and use the presented transport model in the next

section to answer these questions.

We assume egg phosphatidylcholine vesicles (a type of liposome) are used

for encapsulation. Furthermore, we assume that lipid vesicles are perfect

spheres and the diameter of all the vesicles are exactly the same. Moreover,

we assume the number of information molecules per vesicle is deterministic

and exact. We make these assumptions to facilitate our analysis, and al-

though these assumptions are strict, relaxing them will not effect the results.

Let R be the inner radius of the lipid vesicle. Then the number of lipid

molecules required to create such a vesicle is given by [17]:

mR =
4

3
πN

(

(R + 3.7× 10−7)3 − R3
)

/(768v̄), (14)

where mR is the number of lipid molecules required to create a vesicle with

radius R, N is the Avogadro’s number (6.022×1023), R is the inner radius of

the vesicle in cm, and v̄ is the vesicle partial specific volume (0.9848 mL/g).

For example, using this equation 3.72× 107 molecules are required to create

a single vesicle with diameter of 2µm.

Let M be the total number of lipid molecules available at the transmitter

for creation of lipid vesicles. Then the total number of lipid vesicles of size

R that can be created by the transmitter is given by

nR =
M

mR

. (15)

Let x be the number of information particles to be sent by the transmitter.

Then assuming there are nR vesicles available for encapsulation, there will be
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1μm Vesicles 2μm Vesicles500nm Vesicles250nm Vesicles

Figure 4: The shape of the optimal transmission area of different vesicle diameters. Each

of the four rectangles is the total area that could be dedicated as the transmission area.

The dimension of this area is 20 µm by 10 µm. The squares inside each transmission area

represent the optimal grid for each vesicle size.

(nR−x mod nR) vesicles with ⌊x/nR⌋ information molecules and (x mod nR)

vesicles with ⌈x/nR⌉ information particles, where (mod) is the modulo oper-

ator (i.e. the remainder of the integer division), ⌊.⌋ the floor function and ⌈.⌉

the ceiling function. For example, if there are x = 18 information particles

and nR = 5 vesicles, after the encapsulation process, 2 vesicles encapsulate 3

information particles and 3 vesicles encapsulate 4 information particles.

3.3. Vesicular Encapsulation Analysis and Optimization

In this section we use the transport and the vesicular encapsulation mod-

els presented in the previous subsection to analyze and optimize vesicular en-

capsulation. We consider four different diameter values for vesicles: 250nm,

500nm, 1µm, and 2µm. Our goal is to find the optimal vesicle size. We use

the optimization scheme presented in Section 3.1 to optimize the shape of

the grid transmission area for each vesicle size. Figure 4 shows the shape

of the optimal transmission area for each diameter size. Notice that for the
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2µm vesicle size, since the square grid occupies the whole area, it is not really

optimized.

To make the comparison we rely on Monte Carlo simulation of active

transport propagation presented in Section 2.1, and the following parameters:

simulation time steps ∆T = 0.1 seconds, microtubule diffusion coefficient

D = 2.0 · 10−3 µm2/s, average speed of the microtubule vavg = 0.5 µm/s,

and persistence length of the microtubules trajectory Lp = 111 µm. These

parameters are all selected based on experimental observations of ssDNA

covered microtubules moving over a kinesin covered substrate. Furthermore,

for all the subsections that follow, we consider a rectangular propagation

environment, with the dimensions 20µm by 60µm presented in Figure 2.

The transmission area is the strip on the left while the receiver area is the

strip on the right and the separation between the transmission zone and the

receiver zone is 40µm. In our simulations we always use the corresponding

optimized grid loading area for each vesicle size as shown in Figure 4. Based

on experimental results we assume the length of the microtubules is 10µm

and that the number of vesicles a microtubule can load is half its length

divided by the diameter of the vesicles. These parameters are summarized

in Table 1.

Table 1: Simulation parameters for vesicular encapsulation

Vesicle’s Diameter Number of Squares in Grid Microtubule’s Maximum Load

250 nm 1600 20

500 nm 400 10

1 µm 100 5

2 µm 50 2

17



Since there are lots of different parameters effecting the encapsulation

process, we present three distinct set of results in the next four subsections.

First, we consider the amount of liquid volume transported by each vesicle

size (i.e. the liquid volume encapsulated inside vesicles). Since the molecular

communication environment is aqueous, if we assume the concentration of

the information particles is constant inside vesicles, the more liquid volume

is transported the more information particles are transported. Second, we

keep the size of the vesicles constant and study the effect of different concen-

trations of information particles on the number of transported information

particles. Third, we consider a limited amount of lipid molecules available at

the transmitter for generation of lipid vesicles, and study whether it is better

to generate small number of large vesicles or numerous small vesicles.

3.3.1. Effects of Vesicle Size

Table 2: Number of vesicles to keep the liquid volume constant at 4.19fL

Vesicle’s Diameter Number of Vesicles

250 nm 512

500 nm 64

1 µm 8

2 µm 1

We consider the effects of vesicle size on the amount of encapsulated

liquid transported from the source to the destination. We assume the con-

centration of information particles in the liquid encapsulated by vesicles is

constant. Since the number of information particles inside each vesicle is

related to its concentration in the encapsulated liquid, the more liquid vol-
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ume is transported the more information particle is transported, assuming

the concentration is constant.

Let D be the inner diameter of the lipid vesicle. The volumetric capacity

of the vesicle is therefore given by,

V =
4

3
π

(

D

2

)3

=
1

6
πD3. (16)

For example, if we assume the diameter of the vesicle is 2µm, the volume of

the liquid inside a single vesicle is 4.19fL. If the vesicle’s diameter is decreased

to 1µm, the liquid volume per single vesicle is 0.52fL. Therefore, liquid volume

inside a single 2µm vesicle is equivalent to liquid volume inside eight 1µm

vesicles. In our simulations, to keep the total liquid volume at the transmitter

constant at 4.19fL, different total number of vesicles is used for each vesicle

size as shown in Table 2.

Figure 5 shows the average transported liquid volume with the standard

deviation bars for time per channel use of 250 seconds. As the vesicle size

increases, the average liquid volume transported increases. However, the

standard deviation of the transported volume also increases as the liquid

volume per single vesicle is greater. When the vesicle size is increased from

the 250nm to 1µm the average liquid volume transported increases consis-

tently. However, the difference between the 1µm and 2µm vesicles is negli-

gible. Moreover, the standard deviation of the 1µm vesicle is smaller. From

these results we confirm that there exists an optimal vesicle size that can be

found using our simulations. In this particular system the optimal vesicle

size is 1µm.
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Figure 5: Average liquid volume transported for each vesicle size. The total liquid volume

transmitted by the source is 4.19fL. The lines show the standard deviation of the received

volume. (T=250s).

3.3.2. Effects of Concentration of Information Particles

We study the effects of the concentration of information particles inside

vesicles in this section. We assume the vesicle size is constant at 1µm, which

is the optimal vesicle size based on the results in the previous section. We

also assume that the total number of information particles transmitted by

the source is constant. In particular we assume the transmitter releases 32

information particles. Let β be the concentration of information particles

inside vesicles. Then the number of information particles inside each vesicle

20



Table 3: Number of vesicles and concentration of information particles (1µm vesicle)

Concentration (molecules per fL) Info. Particles per Vesicle Number of Vesicles

61.54 32 1

30.77 16 2

15.39 8 4

7.69 4 8

3.85 2 16

1.92 1 32

is given by

z = βV, (17)

where z is the number of information particles per vesicle and V is the volume

of the vesicle.

For example, assuming the diameter of the vesicle is 1µm and concen-

tration of β = 61.54 molecules per fL, the number of information particles

per vesicle is z = 61.54 × 0.52 = 32. Therefore, if we assume the number

of information molecules to be transmitted by the source is 32, all the infor-

mation particles can be encapsulated inside a single vesicle. Similarly, if the

concentration is changed to β = 30.77 molecules per fL, the number of infor-

mation particles per vesicle is z = 30.77× 0.52 = 16. Therefore, two vesicles

are required to transmit 32 information particles. Following this approach,

Table 3 summarizes different values used in our simulations.

Figure 6 shows the average number of information particles delivered

with standard deviation bars based on each concentration for time durations

per channel use of 250 seconds. One surprising outcome is that the average

number of information particles delivered is very similar across different con-

21



1 2 4 8 16 32
0

5

10

15

20

25

30

35

40

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
In

fo
. 
M

o
l.
 D

e
liv

e
re

d

Number of Info. Mol. per Vesicle

Simulation duration of 4.17 minutes

Figure 6: Average number of information molecules delivered for each concentration (i.e.

number of information particles per vesicle). The total number of information particles

transmitted is 32. The lines show the standard deviation of the number of information

particles received. (T=250s).

centration values. Moreover, as the concentration of information particles

per vesicle is increased the standard deviation of the number of information

particles delivered is increased.

3.3.3. Effects of Number of Lipid Molecules

In this section we study the effects of the number of lipid molecules on

the number of information particles transported. The number of vesicles that

can be generated based on the number of lipid molecules can be calculated

using the equations presented in Section 3.2. By keeping the number of lipid
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Table 4: Number of vesicles that can be generated using 3.72× 107 lipid molecules

Vesicle Size Information Particles per Vesicle Number of Vesicles

250 nm 1 64

500 nm 4 16

1 µm 16 4

2 µm 64 1

molecules constant different number of vesicles can be generated for different

vesicle sizes. For example, if the number of lipid molecules is about 3.72×107,

applying Equation (14), a single 2µm vesicle can be generated. Similarly,

using 3.72× 107 lipid molecules, four 1µm vesicles can be generated. For the

rest of this section we assume the number of lipid molecules is constant at

3.72× 107 and the number of information particles to be transmitted is also

constant at 64. Table 4 shows the number of vesicles that can be generated

as well as the number of information particles per vesicle.

Figure 7 shows the average number of information molecules delivered

with standard deviation bars for time per channel use of 250 seconds. From

the figure we can see that as the size of the vesicle is increased from 250nm

to 1µm, the average number of information molecules delivered is increased.

However, when the size of the vesicle is increased from 1µm to 2µm, the

average number of molecules delivered does not change significantly. The

standard deviation of the number of information particles delivered increases

as the size of the vesicle increases. From these results we conclude that there

exist an optimal vesicle size for the channel considered.
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Figure 7: Average number of information molecules delivered for each vesicle size. The

total number of information particles transmitted is 64 and the total number of lipid

molecules is constant at 3.72× 107. The lines show the standard deviation of the number

of information particles received. (T=250s).

4. Information Theoretic Applications

To show the flexibility of our transport model we use it in this section to

estimate the channel capacity of active transport molecular communication

system. We first describe channel capacity and achievable information rates.

We then use both Monte Carlo simulations and the proposed transport model

to estimate the channel capacity and compare the results. We also show that

the optimizations performed in Section 3, increase the information rate and

channel capacity.
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4.1. Achievable Information Rates

Previous work has considered molecular communication either as a tim-

ing channel problem (i.e., where information is encoded in the times when

molecules are released) [6, 3]; as an inscribed matter problem (i.e., where

information is encoded by transmitting custom-made particles, such as spe-

cific strands of DNA) [2]; or as a mass transfer problem (i.e., a message is

transmitted by moving a number of particles from the transmitter to the

receiver) [3, 4, 5]. In this paper, we consider information transmission as a

mass transfer problem.

In the simplest possible conception of this scheme, the particles them-

selves are not information-bearing, and a message is conveyed in the number

of particles released by the transmitter. For example, if a maximum of three

particles may be used, from a traditional communication system perspective,

we may form messages two bits long (i.e., log2 4): “00” for 0 particle, “01”

for 1 particle, “10” for 2 particles, and “11” for 3 particles. However, this

message might not be perfectly conveyed to the receiver: given a time limit

T for the communication session, it is possible that some of the particles will

not arrive at the receiver after T has elapsed.

The maximum rate at which any communication system can reliably

transmit information over a noisy channel is bounded by a limit called chan-

nel capacity [18]. In traditional communication systems, a source (trans-

mitter) has a set of possible transmission symbols X and transmits a symbol

X ∈ X per channel use, where, from the channel’s perspective, X is a random

variable given by probability distribution function (PDF) fX(x). Because of

the noise present in the channel, the destination (receiver) might not receive
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Figure 8: Traditional and molecular communication channels. In traditional communica-

tion the noisy channel limits the channel capacity, while in molecular communication the

random propagation of information particles limits the channel capacity.

the symbol X correctly. Let Y be the set of possible message symbols the

destination can receive. Therefore, the destination receives a symbol Y ∈ Y

per channel use, where Y is a random variable given by PDF fY (y). This

process is summarized in the top portion of Figure 8.

The channel capacity of such a communication channel can be calculated

using mutual information I(X; Y ), given by

I(X; Y ) = E

[

log2

fY |X(y|x)
∑

x fY |X(y|x)fX(x)

]

, (18)

where, in this example, fY |X(y|x) represents the probability of receiving sym-

bol y at the destination, given that symbol x was transmitted by the source;

fX(x) represents the probability of transmitting symbol x at the source; and

E[·] represents expectation. The channel capacity can be calculated using

mutual information as,

C = max
fX(x)

I(X; Y ), (19)

where C is the channel capacity, which is represented by the maximum value

of mutual information over all possible transmission symbols’ probability

26



distributions.

The same concept can be applied to molecular communication systems,

as shown in the bottom of Figure 8. Since we have assumed that messages are

encoded in the number of particles, let X ∈ X represent the number of parti-

cles released into the medium by the transmitter (i.e. the symbol transmitted

by the source), Y ∈ Y represent the number that arrive at the destination

(i.e. the symbol received at the destination) once T seconds have elapsed,

and xmax be the maximum number of particles the transmitter can release

per channel use. In other words, the set of possible transmission symbols

and the set of possible received symbols are X = Y = {0, 1, 2, · · · , xmax}.

Just like the traditional communication channel, from the channel’s perspec-

tive, X ∈ X is a discrete random variable given by probability mass function

(PMF) fX(x), Y ∈ Y is also a discrete random variable given by PMF fY (y),

and a channel use is defined as T second intervals between the transmission

releases. Therefore in traditional communication system, the received sym-

bols at the receiver are corrupted with noise from the environment, while

in the molecular communication system, the received symbols are corrupted

because of the random propagation of particles.

Clearly, there exists some PMF fY |X(y|x) of the number of arrived parti-

cles given the number of transmitted particles. If this PMF is known, we can

calculate mutual information for any fX(x). However, in order to calculate

the channel capacity, we need to find the PMF fX(x) that maximizes mutual

information. We can use the Blahut-Arimoto algorithm [19, 20] to find the

PMF fX(x) such that, given fY |X(y|x), mutual information is maximized.

Therefore, if PMF fY |X(y|x) is known, we can calculate the channel capacity

27



of the molecular communication system in a straightforward manner.

Finding the PMF fY |X(y|x) is non-trivial because of the random motion

of particles, as well as the shape and the geometry of the confined molecular

communication channel. This PMF can be estimated using Monte Carlo

simulations as proposed in [8, 5]. Using this scheme, for a given number

of particles released by the transmitter (x), the motion of a microtubule is

simulated for T seconds and the number of particles delivered to the receiver

(y) is measured at the end of T seconds. By repeating this process the PMF

fY |X(y|x) can be estimated for the time duration T as shown in Algorithm 2.

The whole simulation process can be repeated for different values of x. Since

for each value of X ∈ X and T a set of simulations is necessary, this process

can be inefficient. However, employing our transport model this conditional

probability can be calculated more efficiently. In the next two subsections,

we use our transport model to estimate the channel capacity, and use Monte

Carlo simulations to verify the optimizations proposed in Section 3.

4.2. Analysis of the Transport Model

In this section we compare our transport model to the Monte Carlo simu-

lations proposed in [5] both in terms of simulation time and accuracy. We also

show that the optimal loading area derived using our transport model does

indeed increase the channel capacity of molecular communication channel.

We use the same molecular communication environment and simulation

parameters used in Section 3.3. We assume the set of possible transmission

symbols are X = {0, 1, 2, · · · , xmax}, for some value of xmax, where a trans-

mission symbol X ∈ X is represented by release of X information particles

into the medium. All the released particles will be randomly distributed over
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Algorithm 2 Simulation algorithm to calculate fY |X(y|x) for active trans-

port

1: for each value of x ∈ X do

2: for k = 1, . . . , NumbTrials do

3: simulate the motion of microtubule(s) for T seconds

4: save the number of information particles delivered inside an array

5: end for

6: for each value of y ∈ Y do

7: fY |X(y|x)← NumbT imesY ParticlesArrived/NumbTrials

8: end for

9: end for

the transmission zone (i.e. grid transmission zone) and remain stationary

until they are picked up by a microtubule for delivery. In case of Monte

Carlo simulation we derive the PMF fY |X(y|x) by simulating the motion of

the microtubules many times according to Algorithm 2, while we estimate

the PMF fY |X(y|x) using the proposed technique in case of transport model.

We then use Blahut-Arimoto algorithm [19, 20] to find the PMF fX(x), that

would maximize the mutual information, and hence calculate the channel

capacity based on each technique.

We assume the diameter of the information particles is 1µm and there are

100 squares in the grid loading area (i.e. there could be as much as 100 infor-

mation particles in the loading strip). In case of Monte Carlo simulations, we

assume the average length of the microtubules is 10µm, and each microtubule

can load up to 5 information particles in one trip from the transmission zone

to the receiver zone. Notice that our transport model is not capable of cap-
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Figure 9: Mutual information (i.e. information rate) plot. Strip transmission zone plots

are presented as circles and optimal transmission zone plots are presented as squares.

The solid markers indicate simulated information rate and the empty markers present the

information rate calculated using our model. The darker plots present the communication

time duration of 1000 s and the lighter plots represent a time duration of 7000 s. Note

the very high accuracy of the model at 1000 s.

turing this effect. However, as we show in our results the transport model

is fairly accurate. These parameters are all selected based on experimental

observations of ssDNA covered microtubules moving over a kinesin covered

substrate. We also compare the information rate of the optimal loading area,

generated using our transport model, to the strip loading area used in [5].

Recall that this optimal loading area is represented by the white squares in

the bottom of the Figure 3.
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Figure 9 shows the mutual information (i.e. maximum achievable in-

formation rate) of two different transmission zones: strip transmission zone,

shown using circles, and the optimal transmission zone, shown using squares.

The mutual information is plotted against the xmax which represents the max-

imum number of possible transmission symbols. The mutual information is

calculated by using both simulation (solid markers) and the transport model

(empty markers). As we can see for small time durations, the transport

model estimates the simulated mutual information closely. However, as time

duration increases, the difference between the mutual information obtained

through simulations and the transport model increases. This error is a by-

product of the independence assumptions made during the derivation of our

transport model. Finally, we can see that the optimal transmission zone

achieves a much higher information rate compared to the strip transmission

zone as proposed by our analysis of our transport model.

Table 5: Number of simulations required to estimate fY |X(y|x)

Method of PMF Estimation Number of Computer Simulations

Monte Carlo Simulation 2× 2× 40 = 160

transport model 3

We also compare the number of computer simulations required to estimate

PMF fY |X(y|x), for the plots in Figure 9, using both Monte Carlo simulations

and the proposed transport model. The results are summarized in Table 5.

Since there are 40 values of xmax and two time durations of 1000s and 7000s,

when Monte Carlo simulation is used to estimate the PMF fY |X(y|x), there

are 80 sets of simulations required to generate the plot for the strip loading

area and another 80 sets of simulations to generate the results for optimal
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loading area. However, using our transport model, two sets of simulations

are necessary to calculate the PMF for K, the number of microtubule trips

from the transmission zone to the receiver zone in times 1000s and 7000s,

and one set of simulations to calculate the PMF for Vi, the probability that

the ith grid square is visited in one trip. These simulations can be used for

both strip and optimal loading area and as the result no extra simulations

are necessary.

When Monte Carlo simulation is employed, as the number of information

particles released by the transmitter increases, the actual simulation times

increases. For example, simulating one particle at the source take much

less time than simulating 40 particles at the source. In this case, when one

particle is assumed to be released, the simulation runs until time duration

T is simulated or until the single particle is delivered, while it must run

until time duration T is simulated or 40 particle are delivered, when 40

particles are assumed to be released. However, using the proposed transport

model, the simulation times are constant regardless of the number of particles

released by the transmitter. Therefore, using the proposed transport model

the channel capacity can be calculated much quicker than the Monte Carlo

simulations proposed in [3, 5]. For example, using simulations written in

Matlab [21], and average desktop computers equipped with Intel Core 2 Duo

processors with different speeds ranging from 2.5GHz to 3.0GHz, we used 40

different CPU cores to generate the Monte Carlo simulation results shown

in Figure 9, for both the strip and optimal loading area, in about two weeks

(almost one week for each transmission zone). However, the plots based on

the transport model were generated using three CPU cores in about a day
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for both the strip and the optimal loading area.

4.3. Effects of Vesicular Encapsulation
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Figure 10: Channel capacity in bits for a single information particle encapsulated inside

each lipid vesicle (T=250s).

In this section we consider the effects of vesicular encapsulation on achiev-

able information rates. We use the same four vesicle sizes used in Section

3.3, as well as the same simulation environment and parameters. We assume

only a single particle is encapsulated inside the lipid vesicles regardless of the

vesicle’s diameter. We assume the set of possible transmission symbols are

X = {0, 1, 2, · · · , xmax}, for some value of xmax, where a transmission symbol

X ∈ X is represented by release of X information particles into the medium.
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Figure 11: Channel capacity in bits per second versus time per channel use for a single

information particle encapsulated inside each lipid vesicle.

All the released particles will be randomly distributed over the transmission

zone (i.e. grid transmission zone) and remain stationary until they are picked

up by a microtubule for delivery. To make the comparison we rely on Monte

Carlo simulations.

The results are shown in Figure 10 for time duration per channel use

of 250 seconds. From the graph we can see that as the size of the vesicles

increase from 250nm to 1µm the channel capacity of the microchannel in-

creases. However, as the size increases from 1µm to 2µm the channel capacity

does not increase. The effect is due to the difference in the shape of the trans-

mission zone as shown in Figure 4. Because 2µm squares cover a larger area,
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they spread across the whole transmission area including the center parts

where the probability of a microtubule visit is every low as shown in Figure

3.

In Figure 11 the channel capacity in bits per second is plotted against

different time durations per channel use for xmax = 40. From the figure again

we can see that as the size of the vesicle is increased from 250nm to 1µm

the curve’s peak is increased. However, 1µm vesicles achieve a higher peak

than the 2µm vesicles and hence have a higher channel capacity in bits per

second. This is again because of the shape of the transmission area which in

the case of 2µm vesicle is not optimized.

Based on the results we conclude that encapsulation of information vesi-

cles using lipid vesicles improves the channel capacity. This effect is due to

the small size of the information particles which are typically molecules. For

example if no encapsulation is employed the size of a typical information

particle would be 10nm. Therefore, based on the presented results we can

see that 10nm squares in the grid loading area would have a much lower

channel capacity compared to the larger squares of vesicular encapsulation.

However, depending on the shape and the dimensions of the transmission

area, there is an optimal vesicle size. This effect is particularly evident in

our simulations as we increase the vesicle size from 1µm to 2µm. Therefore,

we conclude that the optimal vesicle size for this particular channel is 1µm,

which is in accordance with our results in Section 3.3.
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5. Conclusion

In this work we presented a simple transport model for molecular com-

munication system employing active transport propagation. We showed that

our model could be used to study and optimize molecular communication

systems. As an example, we optimized the shape of the transmission area,

and considered vesicular encapsulation. We showed that for a given commu-

nication channel there is an optimal vesicle size. As an application, we used

our transport model to estimate the channel capacity of a molecular com-

munication channel. We considered a molecular communication system, in

a rectangular confined space, employing active transport as proposed in [9].

In order to estimate the channel capacity of such a communication system,

previous works [3, 5], had relied on Monte Carlo simulations of the motion

of microtubule filaments. These simulations can be time consuming since for

each set of possible transmission symbols as well as channel time durations,

a different set of simulations is necessary. However, by employing our trans-

port model, we showed that the channel capacity could be estimated in a

computationally efficient manner. The capacity estimation obtained using

the proposed transport model is very close to the Monte Carlo simulation

estimated channel capacity for small channel time durations. However, as

channel time duration increases, the estimation error increases for the pro-

posed transport model. We also showed that by optimizing the shape of

the transmission zone using our transport model, channel capacity increases.

Moreover, we showed that using an optimal vesicle size, derived using the

transport model, increases the channel capacity.
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